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1 Correlation
1.1 Correlation and Causation

Figure 1: https://xkcd.com/925/

1.2 Pearson correlation coefficient
Pearson correlation coefficient (r) is a measure of the strength and the direction of a linear relationship
between two variables in the sample,

r =
∑

(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2∑(yi − ȳ)2

where r always lies between -1 and 1. Values of r near -1 or 1 indicate a strong linear relationship between
the variables whereas values of r near 0 indicate a weak linear relationship between variables. If r is zero the
variables are linearly uncorrelated, that is there is no linear relationship between the two variables.
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1.3 Hypothesis testing for the population correlation coefficient ρ
Hypothesis testing for the population correlation coefficient ρ.

Assumptions:

• The sample of paired (x, y) data is a random sample.
• The pairs of (x, y) data have a bivariate normal distribution.

The null hypothesis

H0 : ρ = 0 (no significant correlation)

against one of the alternative hypotheses:

• H1 : ρ 6= 0 (significant correlation) “Two-tailed test’ ’

• H1 : ρ < 0 (significant negative correlation) “Left-tailed test’ ’

• H1 : ρ > 0 (significant positive correlation) “Right-tailed test’ ’

Compute the value of the test statistic:

t = r
√
n− 2√

1− r2
∼ T(n−2) with df = n− 2.

where n is the sample size.

The critical value(s) for this test can be found from T distribution table ( ±tα/2 for a two-tailed test, −tα for
a left-tailed test and tα for a right-tailed test).

• If the value of the test statistic falls in the rejection region, then reject H0; otherwise, do not reject H0.
• Statistical packages report p-values rather than critical values which can be used in testing the null

hypothesis H0.

1.4 Correlation and linear transformation
• Suppose we have a linear transformation of the two variables x and y, say x1 = ax+ b and y1 = cy + d

where a > 0 and c > 0. Then the Pearson correlation coefficient between x1 and y1 is equal to Pearson
correlation coefficient between x and y.

• For our example, suppose we convert cars’ prices from dollars to pounds (say $1 = £0.75, so y1 = 0.75y),
and we left the age of the cars unchanged. Then we will find that the correlation between the age of
the car and its price in pounds is equal to the one we obtained before (i.e. the correlation between the
age and the price in dollars).

• A special linear transformation is to standardize one or both variables. That is obtaining the values
zx = (x− x̄)/sx and zy = (y− ȳ)/sy. Then the correlation between zx and zy is equal to the correlation
between x and y.
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1.5 Spearman’s rho correlation coefficient (rs)
• When the normality assumption for the Pearson correlation coefficient r cannot be met, or when one or

both variables may be ordinal, then we should consider nonparametric methods such as Spearman’s rho
and Kendall’s tau correlation coefficients.

• Spearman’s rho correlation coefficient, rs,can be obtained by first rank the x values (and y values)
among themselves, and then we compute the Pearson correlation coefficient of the rank pairs. Similarly
−1 ≤ rs ≤ 1, the values of rs range from -1 to +1 inclusive.

• Spearman’s rho correlation coefficient can be used to describe the strength of the linear relationship as
well as the nonlinear relationship.

1.6 Kendall’s tau (τ) correlation coefficient
• Kendall’s tau, τ , measures the concordance of the relationship between two variables, and −1 ≤ τ ≤ 1.

• Any pair of observations (xi, yi) and (xj , yj) are said to be concordant if both xi > xj and yi > yj or if
both xi < xj and yi < yj . And they are said to be discordant, if xi > xj and yi < yj or if xi < xj and
yi > yj . We will have n(n− 1)/2 of pairs to compare.

• The Kendall’s tau (τ) correlation coefficient is defined as:

τ = number of concordant pairs− number of discordant pairs
n(n− 1)/2

1.7 Example: used cars
The table below displays data on Age (in years) and Price (in hundreds of dollars) for a sample of cars of a
particular make and model (Weiss, 2012).

Price (y) Age (x)
85 5
103 4
70 6
82 5
89 5
98 5
66 6
95 6
169 2
70 7
48 7

• The Pearson correlation coefficient,

r =
∑
xiyi − (

∑
xi)(

∑
yi)/n√

[
∑
x2
i − (

∑
xi)2/n][

∑
y2
i − (

∑
yi)2/n]

r = 4732− (58)(975)/11√
(326− 582/11)(96129− 9752/11)

= −0.924

the value of r = −0.924 suggests a strong negative linear correlation between age and price.

• Test the hypothesis H0 : ρ = 0 (no linear correlation) against H1 : ρ < 0 (negative correlation) at
significant level α = 0.05.
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Compute the value of the test statistic:

t = r
√
n− 2√

1− r2
= −0.924

√
11− 2√

1− (−0.924)2
= −7.249

Since t = −7.249 < −1.833, reject H0.

Using R:

First we need to enter the data in R.
Price<-c(85, 103, 70, 82, 89, 98, 66, 95, 169, 70, 48)
Age<- c(5, 4, 6, 5, 5, 5, 6, 6, 2, 7, 7)
carSales<-data.frame(Price,Age)
str(carSales)

## 'data.frame': 11 obs. of 2 variables:
## $ Price: num 85 103 70 82 89 98 66 95 169 70 ...
## $ Age : num 5 4 6 5 5 5 6 6 2 7 ...

Now let us plot age against price, i.e. a scatterplot.
plot(Price ~ Age, pch=16, col=2)
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or we can use ggplot2 for a much nicer plot.
library(ggplot2)
# Basic scatter plot
ggplot(carSales, aes(x=Age, y=Price)) + geom_point()
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From this plot it seems that there is a negative linear relationship between age and price. There are several
tools that can help us to measure this relationship more precisely.
cor.test(Age, Price,

alternative = "less",
method = "pearson", conf.level = 0.95)

##
## Pearson's product-moment correlation
##
## data: Age and Price
## t = -7.2374, df = 9, p-value = 2.441e-05
## alternative hypothesis: true correlation is less than 0
## 95 percent confidence interval:
## -1.0000000 -0.7749819
## sample estimates:
## cor
## -0.9237821

Suppose now we scale both variables (standardized)
cor.test(scale(Age), scale(Price),

alternative = "less",
method = "pearson", conf.level = 0.95)

##
## Pearson's product-moment correlation
##
## data: scale(Age) and scale(Price)
## t = -7.2374, df = 9, p-value = 2.441e-05
## alternative hypothesis: true correlation is less than 0
## 95 percent confidence interval:
## -1.0000000 -0.7749819
## sample estimates:
## cor

8



## -0.9237821

We notice that corr(age, price in pounds) = corr(age, price in dollars).

We can also obtain Spearman’s rho and Kendall’s tau as follows.
cor.test(Age, Price,

alternative = "less",
method = "spearman", conf.level = 0.95)

##
## Spearman's rank correlation rho
##
## data: Age and Price
## S = 403.26, p-value = 0.0007267
## alternative hypothesis: true rho is less than 0
## sample estimates:
## rho
## -0.8330014
cor.test(Age, Price,

alternative = "less",
method = "kendall", conf.level = 0.95)

##
## Kendall's rank correlation tau
##
## data: Age and Price
## z = -2.9311, p-value = 0.001689
## alternative hypothesis: true tau is less than 0
## sample estimates:
## tau
## -0.7302967

As the p-values for all three tests (Pearson, Spearman, Kendall) less than α = 0.05, we reject the null
hypothesis of no correlation between the age and the price, at the 5% significance level.

Now what do you think about correlation and causation?

Figure 2: https://xkcd.com/552/
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2 Simple regression: Introduction
2.1 Motivation
Predicting the Price of a used car

2.2 Simple linear regression
Simple linear regression (population)

Y = β0 + β1x+ ε

In our example:
Price = β0 + β1Age+ ε

Simple linear regression (sample)
ŷ = b0 + b1x

where the coefficient β0 (and its estimate b0 or β̂0 ) refers to the y-intercept or simply the intercept or the
constant of the regression line, and the coefficient β1 (and its estimate b1 or β̂1 ) refers to the slope of the
regression line.

2.3 Least-Squares criterion
• The least-squares criterion is that the line that best fits a set of data points is the one having the

smallest possible sum of squared errors. The ‘errors’ are the vertical distances of the data points to the
line.

• We need to use the data to estimate the values of the parameters β0 and β1, i.e. to fit a straight line to
the set of points {(xi, yi)}. There are many straight lines we could use, so we need some idea of which
is best. Clearly, a bad straight line model would be one that had many large errors, and conversely, a
good straight line model will have, on average, small errors. We quantify this by the sum of squares of
the errors:

Q(β0, β1) =
n∑
i=1

ε2i =
n∑
i=1

[yi − (β0 + β1xi)]2

then the “line of best fit” will correspond to the line with values of β0 and β1 that minimises Q(β0, β1).
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• The regression line is the line that fits a set of data points according to the least squares criterion.

• The regression equation is the equation of the regression line.

• The regression equation for a set of n data points is ŷ = b0 + b1 x, where

b1 = Sxy
Sxx

=
∑

(xi − x̄)(yi − ȳ)∑
(xi − x̄)2 and b0 = ȳ − b1 x̄

• y is the dependent variable (or response variable) and x is the independent variable (predictor variable
or explanatory variable).

• b0 is called the y-intercept and b1 is called the slope.

SSE and the standard error

This least square regression line minimizes the error sum of squares

SSE =
∑

e2
i =

∑
(yi − ŷi)2

The standard error of the estimate, se =
√
SSE/(n− 2), indicates how much, on average, the observed

values of the response variable differ from the predicated values of the response variable.

2.4 Example: used cars (cont.)
The table below displays data on Age (in years) and Price (in hundreds of dollars) for a sample of cars of a
particular make and model.(Weiss, 2012)
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Price (y) Age (x)
85 5
103 4
70 6
82 5
89 5
98 5
66 6
95 6
169 2
70 7
48 7

• For our example, age is the predictor variable and price is the response variable.

• The regression equation is ŷ = 195.47 − 20.26 x, where the slope b1 = −20.26 and the intercept
b0 = 195.47

• Prediction: for x = 4, that is we would like to predict the price of a 4-year-old car,

ŷ = 195.47− 20.26(4) = 114.43 or $11443

Back to our used cars example, we want to find the “best line” through the data points, which can be used to
predict prices of used cars based on their age.

First we need to enter the data in R.
Price<-c(85, 103, 70, 82, 89, 98, 66, 95, 169, 70, 48)
Age<- c(5, 4, 6, 5, 5, 5, 6, 6, 2, 7, 7)
carSales<-data.frame(Price,Age)
str(carSales)

## 'data.frame': 11 obs. of 2 variables:
## $ Price: num 85 103 70 82 89 98 66 95 169 70 ...
## $ Age : num 5 4 6 5 5 5 6 6 2 7 ...
cor(Age, Price, method = "pearson")

## [1] -0.9237821

Scatterplot: Age vs. Price
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library(ggplot2)
ggplot(carSales, aes(x=Age, y=Price)) + geom_point()
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# Remove the confidence interval
ggplot(carSales, aes(x=Age, y=Price)) +

geom_point()+
geom_smooth(method=lm, formula= y~x, se=FALSE)
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2.5 Prediction

# simple linear regression
reg<-lm(Price~Age)
print(reg)
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##
## Call:
## lm(formula = Price ~ Age)
##
## Coefficients:
## (Intercept) Age
## 195.47 -20.26

To predict the price of a 4-year-old car (x = 4):

ŷ = 195.47− 20.26(4) = 114.43
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3 Simple Regression: Coefficient of Determination
3.1 Extrapolation

• Within the range of the observed values of the predictor variable, we can reasonably use the regression
equation to make predictions for the response variable.

• However, to do so outside the range, which is called Extrapolation, may not be reasonable because
the linear relationship between the predictor and response variables may not hold here.

• To predict the price of an 11-year old car, ŷ = 195.47 − 20.26(11) = −27.39 or $ 2739, this result is
unrealistic as no one is going to pay us $2739 to take away their 11-year old car.

3.2 Outliers and influential observations
• Recall that an outlier is an observation that lies outside the overall pattern of the data. In the context

of regression, an outlier is a data point that lies far from the regression line, relative to the other data
points.

• An influential observation is a data point whose removal causes the regression equation (and line) to
change considerably.

• From the scatterplot, it seems that the data point (2,169) might be an influential observation. Removing
that data point and recalculating the regression equation yields ŷ = 160.33− 14.24 x.
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3.3 Coefficient of determination
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• The total variation in the observed values of the response variable, SST =
∑

(yi− ȳ)2, can be partitioned
into two components:

– The variation in the observed values of the response variable explained by the regression: SSR =∑
(ŷi − ȳ)2

– The variation in the observed values of the response variable not explained by the regression:
SSE =

∑
(yi − ŷi)2

• The coefficient of determination, R2 (or R-square), is the proportion of the variation in the observed
values of the response variable explained by the regression, which is given by

R2 = SSR

SST
= SST − SSE

SST
= 1− SSE

SST

where SST = SSR + SSE. R2 is a descriptive measure of the utility of the regression equation for
making prediction.

• The coefficient of determination R2 always lies between 0 and 1. A value of R2 near 0 suggests that the
regression equation is not very useful for making predictions, whereas a value of R2 near 1 suggests
that the regression equation is quite useful for making predictions.

• For a simple linear regression (one independent variable) ONLY, R2 is the square of Pearson correlation
coefficient, r.

• Adjusted R2 is a modification of R2 which takes into account the number of independent variables,
say k. In a simple linear regression k = 1. Adjusted-R2 increases only when a significant related
independent variable is added to the model. Adjusted-R2 has a crucial role in the process of model
building. Adjusted-R2 is given by

Adjusted-R2 = 1− (1−R2) n− 1
n− k − 1

17



3.4 Notation used in regression

Quantity Defining formula Computing formula
Sxx

∑
(xi − x̄)2 ∑

x2
i − nx̄2

Sxy
∑

(xi − x̄)(yi − ȳ)
∑
xiyi − nx̄ȳ

Syy
∑

(yi − ȳ)2 ∑
y2
i − nȳ2

where x̄ =
∑

xi

n and ȳ =
∑

yi

n . And,

SST = Syy, SSR =
S2
xy

Sxx
, SSE = Syy −

S2
xy

Sxx

and SST = SSR+ SSE.
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4 Simple Linear Regression: Assumptions
Recall that the simple linear regression model for Y on x is

Y = β0 + β1x+ ε

where

Y : the dependent or response variable

x : the independent or predictor variable, assumed known

β0, β1 : the regression parameters, the intercept and slope of the regression line

ε : the random regression error around the line.

and the regression equation for a set of n data points is ŷ = b0 + b1 x, where

b1 = Sxy
Sxx

=
∑

(xi − x̄)(yi − ȳ)∑
(xi − x̄)2

and
b0 = ȳ − b1 x̄

where b0 is called the y-intercept and b1 is called the slope.

The residual standard error se can be defined as

se =
√
SSE

n− 2 =
√∑

(yi − ŷi)2

n− 2
se indicates how much, on average, the observed values of the response variable differ from the predicated
values of the response variable.

4.1 Simple Linear Regression Assumptions (SLR)
We have a collection of n pairs of observations {(xi, yi)}, and the idea is to use them to estimate the unknown
parameters β0 and β1.

εi = Yi − (β0 + β1 xi) , i = 1, 2, . . . , n

We need to make the following key assumptions on the errors:

A. E(εi) = 0 (errors have mean zero and do not depend on x)

B. V ar(εi) = σ2 (errors have a constant variance, homoscedastic, and do not depend on x)

C. ε1, ε2, . . . εn are independent.

D. εi are all i.i.d. N(0, σ2), meaning that the errors are independent and identically distributed as Normal
with mean zero and constant variance σ2.

The above assumptions, and conditioning on β0 and β1, imply:

a. Linearity: E(Yi|Xi) = β0 + β1 xi

b. Homogenity or homoscedasticity: V ar(Yi|Xi) = σ2

c. Independence: Y1, Y2, . . . , Yn are all independent given Xi.

d. Normality: Yi|Xi ∼ N(β0 + β1xi, σ
2)
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4.2 Example: used cars (cont.)

We can see that for each age, the mean price of all cars of that age lies on the regression line E(Y |x) = β0 +β1x.
And, the prices of all cars of that age are assumed to be normally distributed with mean equal to β0 + β1x
and variance σ2. For example, the prices of all 4-year-old cars must be normally distributed with mean
β0 + β1(4) and variance σ2.

We used the least square method to find the best fit for this data set, and residuals can be obtained as
ei = yi − ŷi = yi − (195.47− 20.26xi).
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4.3 Residual Analysis
The easiest way to check the simple linear regression assumptions is by constructing a scatterplot of the
residuals (ei = yi− ŷi) against the fitted values (ŷi) or against x. If the model is a good fit, then the residual
plot should show an even and random scatter of the residuals.

4.3.1 Linearity

The regression needs to be linear in the parameters.

Y = β0 + β1 x+ ε

E(Yi|Xi) = β0 + β1 xi ≡ E(εi|Xi) = E(εi) = 0

The residual plot below shows that a linear regression model is not appropriate for this data.
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4.3.2 Constant error variance (homoscedasticity)

The plot shows the spread of the residuals is increasing as the fitted values (or x) increases, which indicates that
we have Heteroskedasticity (non-constant variance). The standard errors are biased when heteroskedasticity
is present, but the regression coefficients will still be unbiased.

How to detect?

• Residuals plot (fitted vs residuals)

• Goldfeld–Quandt test

• Breusch-Pagan test

How to fix?

• White’s standard errors

• Weighted least squares model

• Taking the log

4.3.3 Independent errors terms (no autocorrelation)

The problem of autocorrelation is most likely to occur in time series data, however, it can also occur in
cross-sectional data, e.g. if the model is incorrectly specified. When autocorrelation is present, the regression
coefficients will still be unbiased, however, the standard errors and test statitics are no longer valid.

An example of no autocorrelation
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An example of positive autocorrelation

An example of negative autocorrelation

How to detect?
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• Residuals plot

• Durbin-Watson test

• Breusch-Godfrey test

How to fix?

• Investigate omitted variables (e.g. trend, business cycle)

• Use advanced models (e.g. AR model)

4.3.4 Normality of the errors

We need the errors to be normally distributed. Normality is only required for the sampling distributions,
hypothesis testing and confidence intervals.

How to detect?

• Histogram of residuals

• Q-Q plot of residuals

• Kolmogorov–Smirnov test

• Shapiro–Wilk test

How to fix?

• Change the functional form (e.g. taking the log)

• Larger sample if possible

4.4 Example: Infant mortality and GDP
Let us investigate the relationship between infant mortality and the wealth of a country. We will use data on
207 countries of the world gathered by the UN in 1998 (the ‘UN’ data set is available from the R package
‘car’). The data set contains two variables: the infant mortality rate in deaths per 1000 live births, and the
GDP per capita in US dollars. There are some missing data values for some countries, so we will remove the
missing data before we fit our model.
# install.packages("carData")
library(carData)
data(UN)
options(scipen=999)
# Remove missing data
newUN<-na.omit(UN)
str(newUN)

## 'data.frame': 193 obs. of 7 variables:
## $ region : Factor w/ 8 levels "Africa","Asia",..: 2 4 1 1 5 2 3 8 4 2 ...
## $ group : Factor w/ 3 levels "oecd","other",..: 2 2 3 3 2 2 2 1 1 2 ...
## $ fertility : num 5.97 1.52 2.14 5.13 2.17 ...
## $ ppgdp : num 499 3677 4473 4322 9162 ...
## $ lifeExpF : num 49.5 80.4 75 53.2 79.9 ...
## $ pctUrban : num 23 53 67 59 93 64 47 89 68 52 ...
## $ infantMortality: num 124.5 16.6 21.5 96.2 12.3 ...
## - attr(*, "na.action")= 'omit' Named int [1:20] 4 6 21 35 38 54 67 75 77 78 ...
## ..- attr(*, "names")= chr [1:20] "American Samoa" "Anguilla" "Bermuda" "Cayman Islands" ...
fit<- lm(infantMortality ~ ppgdp, data=newUN)
summary(fit)
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##
## Call:
## lm(formula = infantMortality ~ ppgdp, data = newUN)
##
## Residuals:
## Min 1Q Median 3Q Max
## -31.48 -18.65 -8.59 10.86 83.59
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 41.3780016 2.2157454 18.675 < 0.0000000000000002 ***
## ppgdp -0.0008656 0.0001041 -8.312 0.0000000000000173 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 25.13 on 191 degrees of freedom
## Multiple R-squared: 0.2656, Adjusted R-squared: 0.2618
## F-statistic: 69.08 on 1 and 191 DF, p-value: 0.0000000000000173
plot(newUN$infantMortality ~ newUN$ppgdp, xlab="GDP per Capita", ylab="Infant mortality (per 1000 births)", pch=16, col="cornflowerblue")
abline(fit,col="red")

0 20000 40000 60000 80000 100000

0
20

40
60

80
10

0
12

0

GDP per Capita

In
fa

nt
 m

or
ta

lit
y 

(p
er

 1
00

0 
bi

rt
hs

)

We can see from the scatterplot that the relationship between the two variables is not linear. There is a
concentration of data points at small values of GDP (many poor countries) and a concentration of data
points at small values of infant mortality (many countries with very low mortality). This suggests a skewness
to both variables which would not conform to the normality assumption. Indeed, the regression line (the red
line) we construct is a poor fit and only has an R2 of 0.266.

From the residual plot below we can see a clear evidence of structure to the residuals suggesting the linear
relationship is a poor description of the data, and substantial changes in spread suggesting the assumption of
homogeneous variance is not appropriate.
# diagnostic plots
plot(fit,which=1,pch=16,col="cornflowerblue")
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So we can apply a transformation to one or both variables, e.g. taking the log or adding a quadratic form.
Notice that this will not affect (violet) the linearity assumption as the regression will still be linear in the
parameters. So if we take the logs of both variables gives us the scatterplot of the transformed data set, below,
which appears to show a more promising linear structure. The quality of the regression is now improved,
with an R2 value of 0.766, which is still a little weak due to the rather large spread in the data.
fit1<- lm(log(infantMortality) ~ log(ppgdp), data=newUN)
summary(fit1)

##
## Call:
## lm(formula = log(infantMortality) ~ log(ppgdp), data = newUN)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.16789 -0.36738 -0.02351 0.24544 2.43503
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.10377 0.21087 38.43 <0.0000000000000002 ***
## log(ppgdp) -0.61680 0.02465 -25.02 <0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5281 on 191 degrees of freedom
## Multiple R-squared: 0.7662, Adjusted R-squared: 0.765
## F-statistic: 625.9 on 1 and 191 DF, p-value: < 0.00000000000000022
plot(log(newUN$infantMortality) ~ log(newUN$ppgdp), xlab="GDP per Capita", ylab="Infant mortality (per 1000 births)", pch=16, col="cornflowerblue")
abline(fit1,col="red")
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So we check the residuals again, as we can see from the residuals plot below that the log transformation has
corrected many of the problems with with residual plot and the residuals now much closer to the expected
random scatter.
# diagnostic plots
plot(fit1,which=1,pch=16,col="cornflowerblue")
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Now let us check the Normality of the errors by creating a histogram and normal QQ plot for the residuals,
before and after the log transformation. The normal quantile (QQ) plot shows the sample quantiles of the
residuals against the theoretical quantiles that we would expect if these values were drawn from a Normal
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distribution. If the Normal assumption holds, then we would see an approximate straight-line relationship on
the Normal quantile plot.
par(mfrow=c(2,2))
# before the log transformation.
plot(fit, which = 2,pch=16, col="cornflowerblue")
hist(resid(fit),col="cornflowerblue",main="")
# after the log transformation.
plot(fit1, which = 2, pch=16, col="hotpink3")
hist(resid(fit1),col="hotpink3",main="")
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The normal quantile plot and the histogram of residuals (before the log transformation) shows strong departure
from the expectation of an approximate straight line, with curvature in the tails which reflects the skewness
of the data. Finally, the normal quantile plot and the histogram of residuals suggest that residuals are much
closer to Normality after the transformation, with some minor deviations in the tails.
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5 Simple Linear Regression: Inference
5.1 Simple Linear Regression Assumptions

• Linearity of the relationship between the dependent and independent variables

• Independence of the errors (no autocorrelation)

• Constant variance of the errors (homoscedasticity)

• Normality of the error distribution.

5.2 Simple Linear Regression
The simple linear regression model for Y on x is

Y = β0 + β1x+ ε

where

Y : the dependent or response variable

x : the independent or predictor variable, assumed known

β0, β1 : the regression parameters, the intercept and slope of the regression line

ε : the random regression error around the line.

5.3 The simple linear regression equation
• The regression equation for a set of n data points is ŷ = b0 + b1 x, where

b1 = Sxy
Sxx

=
∑

(xi − x̄)(yi − ȳ)∑
(xi − x̄)2

and
b0 = ȳ − b1 x̄

• y is the dependent variable (or response variable) and x is the independent variable (predictor variable
or explanatory variable).

• b0 is called the y-intercept and b1 is called the slope.

5.4 Residual standard error, se

The residual standard error, se, is defined by

se =
√
SSE

n− 2

where SSE is the error sum of squares (also known as the residual sum of squares, RSS) which can be defined
as

SSE =
∑

e2
i =

∑
(yi − ŷi)2 = Syy −

S2
xy

Sxx

se indicates how much, on average, the observed values of the response variable differ from the predicated
values of the response variable. Under the simple linear regression assumptions, se is an unbiased estimate
for the error standard deviation σ.
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5.5 Properties of Regression Coefficients
Under the simple linear regression assumptions, the least square estimates b0 and b1 are unbiased for the β0
and β1, respectively, i.e.

E[b0] = β0 and E[b1] = β1.

The variances of the least squares estimators in simple linear regression are:

V ar[b0] = σ2
b0

= σ2
(

1
n

+ x̄2

Sxx

)

V ar[b1] = σ2
b1

= σ2

Sxx

Cov[b0, b1] = σb0,b1 = −σ2 x̄

Sxx

We use se to estimate the error standard deviation σ:

s2
b0

= s2
e

(
1
n

+ x̄2

Sxx

)

s2
b1

= s2
e

Sxx

sb0,b1 = −s2
e

x̄

Sxx

5.6 Sampling distribution of the least square estimators
For the Normal error simple linear regression model:

b0 ∼ N(β0, σ
2
b0

)→ b0 − β0

σb0

∼ N(0, 1)

and
b1 ∼ N(β1, σ

2
b1

)→ b1 − β1

σb1

∼ N(0, 1)

We use se to estimate the error standard deviation σ:

b0 − β0

sb0

∼ tn−2

and
b1 − β1

sb1

∼ tn−2

5.7 Degrees of Freedom
• In statistics, degrees of freedom are the number of independent pieces of information that go into the

estimate of a particular parameter.

• Typically, the degrees of freedom of an estimate of a parameter are equal to the number of independent
observations that go into the estimate, minus the number of parameters that are estimated as intermediate
steps in the estimation of the parameter itself.
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• The sample variance has n− 1 degrees of freedom, since it is computed from n pieces of data, minus the
1 parameter estimated as intermediate step, the sample mean. Similarly, having estimated the sample
mean we only have n− 1 independent pieces of data left, as if we are given the sample mean and any
n− 1 of the observations then we can determine the value of remaining observation exactly.

s2 =
∑

(xi − x̄)2

n− 1
• In linear regression, the degrees of freedom of the residuals is df = n− k∗, where k∗ is the numbers of

estimated parameters (including the intercept). So for the simple linear regression, we are estimating
β0 and β1, thus df = n− 2.

5.8 Inference for the intercept β0

• Hypotheses:
H0 : β0 = 0 against H1 : β0 6= 0

• Test statistic:
t = b0

sb0

has a t-distribution with df = n− 2, where sb0 is the standard error of b0, and given by

sb0 = se

√
1
n

+ x̄2

Sxx

and

se =
√
SSE

n− 2 =
√∑

(yi − ŷi)2

n− 2
We reject H0 at level α if |t| > tα/2 with df = n− 2.

• 100(1-α)% confidence interval for β0,

b0 ± tα/2. sb0

where tα/2 is critical value obtained from the t-distribution table with df = n− 2.

5.9 Inference for the slope β1

• Hypotheses:
H0 : β1 = 0 against H1 : β1 6= 0

• Test statistic:
t = b1

sb1

has a t-distribution with df = n− 2, where sb1 is the standard error of b1,and given by

sb1 = se√
Sxx

and

se =
√
SSE

n− 2 =
√∑

(yi − ŷi)2

n− 2
We reject H0 at level α if |t| > tα/2 with df = n− 2.
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• 100(1-α)% confidence interval for β1,

b1 ± tα/2 sb1

where tα/2 is critical value obtained from the t-distribution table with df = n− 2.

5.10 How useful is the regression model?
Goodness of fit test

• We test the null hypothesis H0 : β1 = 0 against H1 : β1 6= 0, the F-statistic

F = MSR

MSE
= SSR

SSE/(n− 2)

has F-distribution with degrees of freedom df1 = 1 and df2 = n− 2.

• We reject H0, at level α, if F > Fα(df1, df2).

• For a simple linear regression ONLY, F-test is equivalent to t-test for β1.

5.11 Example: used cars (cont.)

Price<-c(85, 103, 70, 82, 89, 98, 66, 95, 169, 70, 48)
Age<- c(5, 4, 6, 5, 5, 5, 6, 6, 2, 7, 7)
carSales<-data.frame(Price,Age)
str(carSales)

## 'data.frame': 11 obs. of 2 variables:
## $ Price: num 85 103 70 82 89 98 66 95 169 70 ...
## $ Age : num 5 4 6 5 5 5 6 6 2 7 ...
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# simple linear regression
reg<-lm(Price~Age)
summary(reg)

##
## Call:
## lm(formula = Price ~ Age)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12.162 -8.531 -5.162 8.946 21.099
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 195.47 15.24 12.826 0.000000436 ***
## Age -20.26 2.80 -7.237 0.000048819 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.58 on 9 degrees of freedom
## Multiple R-squared: 0.8534, Adjusted R-squared: 0.8371
## F-statistic: 52.38 on 1 and 9 DF, p-value: 0.00004882

# To obtain the confidence intervals
confint(reg, level=0.95)

## 2.5 % 97.5 %
## (Intercept) 160.99243 229.94451
## Age -26.59419 -13.92833

5.12 R output

33



6 Simple Linear Regression: Confidence and Prediction intervals
Earlier we have introduced the simple linear regression as a basic statistical model for the relationship between
two random variables. We used the least square method for estimating the regression parameters.

Recall that the simple linear regression model for Y on x is

Y = β0 + β1x+ ε

where

Y : the dependent or response variable

x : the independent or predictor variable, assumed known

β0, β1 : the regression parameters, the intercept and slope of the regression line

ε : the random regression error around the line.

and the regression equation for a set of n data points is ŷ = b0 + b1 x, where

b1 = Sxy
Sxx

=
∑

(xi − x̄)(yi − ȳ)∑
(xi − x̄)2

and
b0 = ȳ − b1 x̄

where b0 is called the y-intercept and b1 is called the slope.

Under the simple linear regression assumptions, the residual standard error se is an unbiased estimate
for the error standard deviation σ, where

se =
√
SSE

n− 2 =
√∑

(yi − ŷi)2

n− 2
se indicates how much, on average, the observed values of the response variable differ from the predicated
values of the response variable.

Below we will see how we can use these least square estimates for prediction. First, we will consider the
inference for the conditional mean of the response variable y given a particular value of the independent
variable x, let us call this particular value x∗. Next we will see how to predicting the value of the response
variable Y for a given value of the independent variable x∗. These confidence and predictive intervals, to be
valid, the usual four simple regression assumptions must hold.

6.1 Inference for the regression line E [Y |x∗]
Suppose we are interested in the value of the regression line at a new point x∗. Let’s denote the unknown
true value of the regression line at x = x∗ as µ∗. From the form of the regression line equation we have

µ∗ = µY |x∗ = E [Y |x∗] = β0 + β1x
∗

but β0 and β1 are unknown. We can use the least square regression equation to estimate the unknown true
value of the regression line, so we have

µ̂∗ = b0 + b1x
∗ = ŷ∗
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This is simply a point estimate for the regression line. However, in statistics, point estimate is often not
enough, and we need to express our uncertainty about this point estimate, and one way to do so is via
confidence interval.

A 100(1− α)% confidence interval for the conditional mean µ∗ is

ŷ∗ ± tα/2 · se

√
1
n

+ (x∗ − x̄)2

Sxx

where Sxx =
∑n
i=1(xi − x̄)2, and tα/2 is the α/2 critical value from the t-distribution with df = n− 2.

6.2 Inference for the response variable Y for a given x = x∗

Suppose now we are interested in predicting the value of Y ∗ if we have a new observation at x∗.

At x = x∗, the value of Y ∗ is unknown and given by

Y ∗ = β0 + β1x
∗ + ε

where but β0, β1 and ε are unknown. We will use ŷ∗ = b0 + b1 x
∗ as a basis for our prediction.

A 100(1− α)% prediction interval for Y ∗ at x = x∗ is

ŷ∗ ± tα/2 · se

√
1 + 1

n
+ (x∗ − x̄)2

Sxx

The extra ’1’ under the square root sign, we have here to account for the extra variability of a single
observation about the mean.

Note: we construct a confidence interval for a parameter of the population, which is the conditional mean in
this case, while we construct a prediction interval for a single value.

6.3 Example: used cars (cont.)
Estimate the mean price of all 3-year-old cars, E[Y |x = 3]:

µ̂∗ = 195.47− 20.26(3) = 134.69 = ŷ∗

35



A 95% confidence interval for the mean price of all 3-year-old cars is

ŷ∗ ± tα/2 × se

√
1
n

+ (x∗ − x̄)2

Sxx

[195.47− 20.26(3)]± 2.262× 12.58

√
1
11 + (3− 5.273)2

(11− 1)× 2.018

134.69± 16.76

that is
117.93 < µ∗ < 151.45

Predict the price of a 3-year-old car, Y |x = 3:

ŷ∗ = 195.47− 20.26(3) = 134.69

A 95% predictive interval for the price of a 3-year-old car is

ŷ∗ ± tα/2 × se

√
1 + 1

n
+ (x∗ − x̄)2

Sxx

[195.47− 20.26(3)]± 2.262× 12.58

√
1 + 1

11 + (3− 5.273)2

(11− 1) ∗ ×2.018

134.69± 33.025

that is
101.67 < Y ∗ < 167.72

where Sxx =
∑n
i=1(xi − x̄)2 = (n− 1)V ar(x).

6.4 Regression in R

# Build linear model
Price<-c(85, 103, 70, 82, 89, 98, 66, 95, 169, 70, 48)
Age<- c(5, 4, 6, 5, 5, 5, 6, 6, 2, 7, 7)
carSales<-data.frame(Price=Price,Age=Age)

reg <- lm(Price~Age,data=carSales)
summary(reg)
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##
## Call:
## lm(formula = Price ~ Age, data = carSales)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12.162 -8.531 -5.162 8.946 21.099
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 195.47 15.24 12.826 0.000000436 ***
## Age -20.26 2.80 -7.237 0.000048819 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.58 on 9 degrees of freedom
## Multiple R-squared: 0.8534, Adjusted R-squared: 0.8371
## F-statistic: 52.38 on 1 and 9 DF, p-value: 0.00004882
mean(Age)

## [1] 5.272727
var(Age)

## [1] 2.018182
qt(0.975,9)

## [1] 2.262157
newage<- data.frame(Age = 3)
predict(reg, newdata = newage, interval = "confidence")

## fit lwr upr
## 1 134.6847 117.9293 151.4401
predict(reg, newdata = newage, interval = "prediction")

## fit lwr upr
## 1 134.6847 101.6672 167.7022

We can plot the confidence and prediction intervals as follows:
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7 Multiple Linear Regression: Introduction
7.1 Multiple linear regression model
In simple linear regression, we have one dependent variable (y) and one independent variable (x). In multiple
linear regression, we have one dependent variable (y) and several independent variables (x1, x2, . . . , xk).

• The multiple linear regression model, for the population, can be expressed as

Y = β0 + β1x1 + β2x2 + . . .+ βkxk + ε

where ε is the error term.

• The corresponding least square estimate, from the sample, of this multiple linear regression model is
given by

ŷ = b0 + b1x1 + b2x2 + . . .+ bkxk

• The coefficient b0 (or β0) represents the y-intercept, that is, the value of y when x1 = x2 = . . . = xk = 0.
The coefficient bi (or βi) (i = 1, . . . , k) is the partial slope of xi, holding all other x’s fixed. So bi (or βi)
tells us the change in y for a unit increase in xi, holding all other x’s fixed.

7.2 Example: used cars (cont.)
The table below displays data on Age, Miles and Price for a sample of cars of a particular make and model.

Price (y) Age (x1) Miles (x2)
85 5 57
103 4 40
70 6 77
82 5 60
89 5 49
98 5 47
66 6 58
95 6 39
169 2 8
70 7 69
48 7 89
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The scatterplot and the correlation matrix show a fairly negative relationship between the price of the car and
both independent variables (age and miles). It is desirable to have a relationship between each independent
variable and the dependent variable. However, the scatterplot also shows a positive relationship between the
age and the miles, which isundesirable as it will cause the issue of Multicollinearity.

7.3 Coefficient of determination, R2 and adjusted R2

• Recall that, R2 is a measure of the proportion of the total variation in the observed values of the response
variable that is explained by the multiple linear regression in the k predictor variables x1, x2, . . . , xk.

• R2 will increase when an additional predictor variable is added to the model. One should not simply
select a model with many predictor variables because it has the highest R2 value, it is often good to
have a model with high R2 value but only few x’s included.

• Adjusted R2 is a modification of R2 that takes into account the number of predictor variables.

Adjusted-R2 = 1− (1−R2) n− 1
n− k − 1

7.4 The residual standard error, se

• Recall that,
Residual = Observed value− Predicted value.

ei = yi − ŷi

40



• In a multiple linear regression with k predictors, the standard error of the estimate, se, is defined by

se =
√

SSE

n− (k + 1) where SSE =
∑

(yi − ŷi)2

• The standard error of the estimate, se, indicates how much, on average, the observed values of the
response variable differ from the predicated values of the response variable. The se is the estimate of
the common standard deviation σ.

7.5 Inferences about a particular predictor variable
• To test whether a particular predictor variable, say xi, is useful for predicting y we test the null

hypothesis H0 : βi = 0 against H1 : βi 6= 0.

• The test statistic
t = bi

sbi

has a t-distribution with degrees of freedom df = n− (k + 1). So we reject H0, at level α, if |t| > tα/2.

• Rejection of the null hypothesis indicates that xi is useful as a predictor for y. However, failing to
reject the null hypothesis suggests that xi may not be useful as a predictor of y, so we may want to
consider removing this variable from the regression analysis.

• 100(1-α)% confidence interval for βi is
bi ± tα/2.sbi

where sbi
is the standard error of bi.

7.6 How useful is the multiple regression model?
Goodness of fit test

To test how useful is this model, we test the null hypothesis

H0 : β1 = β2 = . . . = βk = 0, against

H1 : at least one of the βi’s is not zero. - The F -statistic

F = MSR

MSE
= SSR/k

SSE/(n− k − 1)

with degrees of freedom df1 = k and df2 = n− (k + 1).

We reject H0, at level α, if F > Fα(df1, df2).
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7.7 Used cars example continued
Multiple regression equation: ŷ = 183.04− 9.50x1 − 0.82x2

The predicted price for a 4-year-old car that has driven 45 thousands miles is

ŷ = 183.04− 9.50(4)− 0.82(45) = 108.14

(as units of $100 were used, this means $10814)

Extrapolation: we need to look at the region (all combined values) not only the range of the observed
values of each predictor variable separately.

7.8 Regression in R

Price<-c(85, 103, 70, 82, 89, 98, 66, 95, 169, 70, 48)
Age<- c(5, 4, 6, 5, 5, 5, 6, 6, 2, 7, 7)
Miles<-c(57,40,77,60,49,47,58,39,8,69,89)
carSales<-data.frame(Price=Price,Age=Age,Miles=Miles)

# Scatterplot matrix
# Customize upper panel
upper.panel<-function(x, y){

points(x,y, pch=19, col=4)
r <- round(cor(x, y), digits=3)
txt <- paste0("r = ", r)
usr <- par("usr"); on.exit(par(usr))
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par(usr = c(0, 1, 0, 1))
text(0.5, 0.9, txt)

}
pairs(carSales, lower.panel = NULL,

upper.panel = upper.panel)
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reg <- lm(Price~Age+Miles,data=carSales)
summary(reg)

##
## Call:
## lm(formula = Price ~ Age + Miles, data = carSales)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12.364 -5.243 1.028 5.926 11.545
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 183.0352 11.3476 16.130 0.000000219 ***
## Age -9.5043 3.8742 -2.453 0.0397 *

43



## Miles -0.8215 0.2552 -3.219 0.0123 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.805 on 8 degrees of freedom
## Multiple R-squared: 0.9361, Adjusted R-squared: 0.9201
## F-statistic: 58.61 on 2 and 8 DF, p-value: 0.00001666
confint(reg, level=0.95)

## 2.5 % 97.5 %
## (Intercept) 156.867552 209.2028630
## Age -18.438166 -0.5703751
## Miles -1.409991 -0.2329757

7.8.1 Summary

7.9 Multiple Linear Regression Assumptions
• Linearity: For each set of values, x1, x2, . . . , xk, of the predictor variables, the conditional mean of the

response variable y is β0 + β1x1 + β2x2 + . . .+ βkxk.

• Equal variance (homoscedasticity): The conditional variance of the response variable are the same
(equal to σ2) for all sets of values, x1, x2, . . . , xk, of the predictor variables.

• Independent observations: The observations of the response variable are independent of one another.

• Normally: For each set values, x1, x2, . . . , xk, of the predictor variables, the conditional distribution of
the response variable is a normal distribution.
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• No Multicollinearity: Multicollinearity exists when two or more of the predictor variables are highly
correlated.

7.9.1 Multicollinearity

• Multicollinearity refers to a situation when two or more predictor variables in our multiple regression
model are highly (linearly) correlated.

• The least square estimates will remain unbiased, but unstable.

• The standard errors (of the affected variables) are likely to be high.

• Overall model fit (e.g. R-square, F, prediction) is not affected.

7.9.2 Multicollinearity: Detect

• Scatterplot Matrix

• Variance Inflation Factors: the Variance Inflation Factors (VIF) for the ith predictor is

V IFi = 1
1−R2

i

where R2
i is the R-square value obtained by regressing the ith predictor on the other predictor variables.

• V IF = 1 indicates that there is no correlation between ith predictor variable and the other predictor
variables.

• As rule of thumb if V IF > 10 then multicollinearity could be a problem.

7.9.3 Multicollinearity: How to fix?

Ignore: if the model is going to be used for prediction only.

Remove: e.g. see if the variables are providing the same information.

Combine: combining highly correlated variables.

Advanced: e.g. Principal Components Analysis, Partial Least Squares.

7.10 Regression in R (regression assumptions)

plot(reg, which=1, pch=19, col=4)
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plot(reg, which=2, pch=19, col=4)
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# install.packages("car")
library(car)
vif(reg)

## Age Miles
## 3.907129 3.907129

The value of V IF = 3.91 indicates a moderate correlation between the age and the miles in the model, but
this is not a major concern.
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7.11 Dummy Variables
We will consider the case when we have a qualitative (categorical) predictor (also known as a factor) with
two or more levels (or possible values).

Qualitative predictors with only two levels

To include a qualitative predictor in our model, we create a dummy variable that takes on two possible
numerical values, e.g. 0 and 1.

Back to our used cars example, suppose we want to add the transmission type to our linear regression model.
So let d be a dummy variable represents the car’s transmission type which takes value 1 for manual car and
value 0 for automatic car.

Again, y = Price and x1 = age, and let us not include x2 = miles at the moment.

di =
{

1 if ith car is manual,
0 if ith car is automatic

then we can regress price on age and transmission type as

y = β0 + β1x1 + β2d+ ε

so for manual cars:
y = (β0 + β2) + β1x1 + ε

and for automatic cars:
y = β0 + β1x1 + ε

or we can write

yi = β0 + β1x1i + β2di + εi =
{

(β0 + β2) + β1x1i + εi if ith car is manual,
β0 + β1x1i + εi if ith car is automatic
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Qualitative predictors with more than two levels

Suppose we now have a categorical variable with three levels, e.g. fuel type (petrol, diesel, and hybrid). So in
this case we need to create two dummy variables, d1 and d2.

d1i =
{

1 if ith car has a petrol engine,
0 otherwise

d2i =
{

1 if ith car has a diesel engine
0 otherwise

then one can regress price on age and fuel type as

y = β0 + β1x1 + β2d1 + β3d2 + ε

so for petrol cars:
y = (β0 + β2) + β1x1 + ε

for diesel cars:
y = (β0 + β3) + β1x1 + ε

and for hybrid cars
y = β0 + β1x1 + ε

this last model is often called the baseline model.

yi = β0 + β1 x1i + β2d1i + β3d2i + εi

=

 (β0 + β2) + β1x1i + εi if ith car has a petrol engine,
(β0 + β3) + β1x1i + εi if ith car has a diesel engine
β0 + β1x1i + εi if ith car has a hybrid engine
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The interaction effect

In our used car example, we concluded that both age and miles seem to be associated with the price.

Y = β0 + β1x1 + β2x2 + ε

Price = β0 + β1age+ β2miles+ ε

that is the linear regression model assumed that the average effect on price of a one-unit increase in age is
always β1 regardless of the number of miles.

One can extend this model to allow for interaction effects, called an interaction term, which is constructed
by computing the product of x1 = age and x2 = miles, e.g. older cars associated with additional miles of
driving.

Price = β0 + β1age+ β2miles+ β3(age×miles) + ε

Price = β0 + (β1 + β3 ×miles)× age+ β2miles+ ε

Price = β0 + β̃1 × age+ β2miles+ ε

where β̃1 = β1 + β3 ×miles. Since β̃1 changes with x2 = miles, the effect of x1 = age on Y = Price is no
longer constant.

That is adjusting x2 = miles will change the impact of x1 = age on Y = Price.
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