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1 Correlation
1.1 Correlation and Causation

Figure 1: https://xkcd.com/925/

1.2 Pearson correlation coefficient
Pearson correlation coefficient (r) is a measure of the strength and the direction of a linear relationship
between two variables in the sample,

r =
∑

(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2 ∑

(yi − ȳ)2

where r always lies between -1 and 1. Values of r near -1 or 1 indicate a strong linear relationship between
the variables whereas values of r near 0 indicate a weak linear relationship between variables. If r is zero the
variables are linearly uncorrelated, that is there is no linear relationship between the two variables.
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1.3 Hypothesis testing for the population correlation coefficient ρ
Hypothesis testing for the population correlation coefficient ρ.

Assumptions:

• The sample of paired (x, y) data is a random sample.
• The pairs of (x, y) data have a bivariate normal distribution.

The null hypothesis

H0 : ρ = 0 (no significant correlation)

against one of the alternative hypotheses:

• H1 : ρ 6= 0 (significant correlation) “Two-tailed test’ ’

• H1 : ρ < 0 (significant negative correlation) “Left-tailed test’ ’

• H1 : ρ > 0 (significant positive correlation) “Right-tailed test’ ’

Compute the value of the test statistic:

t = r
√
n− 2√

1− r2
∼ T(n−2) with df = n− 2.

where n is the sample size.

The critical value(s) for this test can be found from T distribution table ( ±tα/2 for a two-tailed test, −tα for
a left-tailed test and tα for a right-tailed test).

• If the value of the test statistic falls in the rejection region, then reject H0; otherwise, do not reject H0.
• Statistical packages report p-values rather than critical values which can be used in testing the null

hypothesis H0.

1.4 Correlation and linear transformation
• Suppose we have a linear transformation of the two variables x and y, say x1 = ax+ b and y1 = cy + d

where a > 0 and c > 0. Then the Pearson correlation coefficient between x1 and y1 is equal to Pearson
correlation coefficient between x and y.

• For our example, suppose we convert cars’ prices from dollars to pounds (say $1 = £0.75, so y1 = 0.75y),
and we left the age of the cars unchanged. Then we will find that the correlation between the age of
the car and its price in pounds is equal to the one we obtained before (i.e. the correlation between the
age and the price in dollars).

• A special linear transformation is to standardize one or both variables. That is obtaining the values
zx = (x− x̄)/sx and zy = (y− ȳ)/sy. Then the correlation between zx and zy is equal to the correlation
between x and y.
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1.5 Spearman’s rho correlation coefficient (rs)
• When the normality assumption for the Pearson correlation coefficient r cannot be met, or when one or

both variables may be ordinal, then we should consider nonparametric methods such as Spearman’s rho
and Kendall’s tau correlation coefficients.

• Spearman’s rho correlation coefficient, rs,can be obtained by first rank the x values (and y values)
among themselves, and then we compute the Pearson correlation coefficient of the rank pairs. Similarly
−1 ≤ rs ≤ 1, the values of rs range from -1 to +1 inclusive.

• Spearman’s rho correlation coefficient can be used to describe the strength of the linear relationship as
well as the nonlinear relationship.

1.6 Kendall’s tau (τ) correlation coefficient
• Kendall’s tau, τ , measures the concordance of the relationship between two variables, and −1 ≤ τ ≤ 1.

• Any pair of observations (xi, yi) and (xj , yj) are said to be concordant if both xi > xj and yi > yj or if
both xi < xj and yi < yj . And they are said to be discordant, if xi > xj and yi < yj or if xi < xj and
yi > yj . We will have n(n− 1)/2 of pairs to compare.

• The Kendall’s tau (τ) correlation coefficient is defined as:

τ = number of concordant pairs− number of discordant pairs
n(n− 1)/2

1.7 Used cars example
The table below displays data on Age (in years) and Price (in hundreds of dollars) for a sample of cars of a
particular make and model.(Weiss,2012)

Price (y) Age (x)
85 5
103 4
70 6
82 5
89 5
98 5
66 6
95 6
169 2
70 7
48 7

• The Pearson correlation coefficient,

r =
∑
xiyi − (

∑
xi)(

∑
yi)/n√

[
∑
x2
i − (

∑
xi)2/n][

∑
y2
i − (

∑
yi)2/n]

r = 4732− (58)(975)/11√
(326− 582/11)(96129− 9752/11)

= −0.924

the value of r = −0.924 suggests a strong negative linear correlation between age and price.

• Test the hypothesis H0 : ρ = 0 (no linear correlation) against H1 : ρ < 0 (negative correlation) at
significant level α = 0.05.
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Compute the value of the test statistic:

t = r
√
n− 2√

1− r2
= −0.924

√
11− 2√

1− (−0.924)2
= −7.249

Since t = −7.249 < −1.833, reject H0.

1.8 Correlation in R
First we need to enter the data in R.
Price<-c(85, 103, 70, 82, 89, 98, 66, 95, 169, 70, 48)
Age<- c(5, 4, 6, 5, 5, 5, 6, 6, 2, 7, 7)
carSales<-data.frame(Price,Age)
str(carSales)

## 'data.frame': 11 obs. of 2 variables:
## $ Price: num 85 103 70 82 89 98 66 95 169 70 ...
## $ Age : num 5 4 6 5 5 5 6 6 2 7 ...

Now let us plot age against price, i.e. a scatterplot.
plot(Price ~ Age, pch=16, col=2)
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or we can use ggplot2 for a much nicer plot.
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library(ggplot2)
# Basic scatter plot
ggplot(carSales, aes(x=Age, y=Price)) + geom_point()
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From this plot it seems that there is a negative linear relationship between age and price. There are several
tools that can help us to measure this relationship more precisely.
cor.test(Age, Price,

alternative = "less",
method = "pearson", conf.level = 0.95)

##
## Pearson's product-moment correlation
##
## data: Age and Price
## t = -7.2374, df = 9, p-value = 2.441e-05
## alternative hypothesis: true correlation is less than 0
## 95 percent confidence interval:
## -1.0000000 -0.7749819
## sample estimates:
## cor
## -0.9237821

Suppose now we scale both variables (standardized)
cor.test(scale(Age), scale(Price),

alternative = "less",
method = "pearson", conf.level = 0.95)

##
## Pearson's product-moment correlation
##
## data: scale(Age) and scale(Price)
## t = -7.2374, df = 9, p-value = 2.441e-05
## alternative hypothesis: true correlation is less than 0
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## 95 percent confidence interval:
## -1.0000000 -0.7749819
## sample estimates:
## cor
## -0.9237821

We notice that corr(age, price in pounds) = corr(age, price in dollars).

We can also obtain Spearman’s rho and Kendall’s tau as follows.
cor.test(Age, Price,

alternative = "less",
method = "spearman", conf.level = 0.95)

##
## Spearman's rank correlation rho
##
## data: Age and Price
## S = 403.26, p-value = 0.0007267
## alternative hypothesis: true rho is less than 0
## sample estimates:
## rho
## -0.8330014
cor.test(Age, Price,

alternative = "less",
method = "kendall", conf.level = 0.95)

##
## Kendall's rank correlation tau
##
## data: Age and Price
## z = -2.9311, p-value = 0.001689
## alternative hypothesis: true tau is less than 0
## sample estimates:
## tau
## -0.7302967

As the p-values for all three tests (Pearson, Spearman, Kendall) less than α = 0.05, we reject the null
hypothesis of no correlation between the age and the price, at the 5% significance level.

Now what do you think about correlation and causation?

Figure 2: https://xkcd.com/552/
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2 Simple regression: Introduction
2.1 Motivation: Predicting the Price of a Used Car

2.2 Used cars example
The table below displays data on Age (in years) and Price (in hundreds of dollars) for a sample of cars of a
particular make and model.(Weiss,2012)

Price (y) Age (x)
85 5
103 4
70 6
82 5
89 5
98 5
66 6
95 6
169 2
70 7
48 7

2.3 Regression in R
First we need to enter the data in R.
Price<-c(85, 103, 70, 82, 89, 98, 66, 95, 169, 70, 48)
Age<- c(5, 4, 6, 5, 5, 5, 6, 6, 2, 7, 7)
carSales<-data.frame(Price,Age)
str(carSales)

## 'data.frame': 11 obs. of 2 variables:
## $ Price: num 85 103 70 82 89 98 66 95 169 70 ...
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## $ Age : num 5 4 6 5 5 5 6 6 2 7 ...
cor(Age, Price, method = "pearson")

## [1] -0.9237821

Scatterplot: Age vs. Price
library(ggplot2)
ggplot(carSales, aes(x=Age, y=Price)) + geom_point()
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# Remove the confidence interval
ggplot(carSales, aes(x=Age, y=Price)) +

geom_point()+
geom_smooth(method=lm, formula= y~x, se=FALSE)
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2.4 Simple linear regression
Simple linear regression (population)

Y = β0 + β1x+ ε

In our example:
Price = β0 + β1Age+ ε

Simple linear regression (sample)
ŷ = b0 + b1x

where the coefficient β0 (and its estimate b0 or β̂0 ) refers to the y-intercept or simply the intercept or the
constant of the regression line, and the coefficient β1 (and its estimate (and its estimate b1 or β̂1 ) refers to
the slope of the regression line.

2.5 The Least-Squares criterion
• The least-squares criterion is that the line that best fits a set of data points is the one having the

smallest possible sum of squared errors. The ‘errors’ are the vertical distances of the data points to the
line.

• The regression line is the line that fits a set of data points according to the least squares criterion.

• The regression equation is the equation of the regression line.

• The regression equation for a set of n data points is ŷ = b0 + b1 x, where

b1 = Sxy
Sxx

=
∑

(xi − x̄)(yi − ȳ)∑
(xi − x̄)2 and b0 = ȳ − b1 x̄

• y is the dependent variable (or response variable) and x is the independent variable (predictor variable
or explanatory variable).

• b0 is called the y-intercept and b1 is called the slope.
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2.6 SSE and the standard error
This least square regression line minimizes the error sum of squares

SSE =
∑

e2
i =

∑
(yi − ŷi)2

The standard error of the estimate, se =
√
SSE/(n− 2), indicates how much, on average, the observed

values of the response variable differ from the predicated values of the response variable.

2.7 Prediction

# simple linear regression
reg<-lm(Price~Age)
print(reg)

##
## Call:
## lm(formula = Price ~ Age)
##
## Coefficients:
## (Intercept) Age
## 195.47 -20.26

To predict the price of a 4-year-old car (x = 4):

ŷ = 195.47− 20.26(4) = 114.43
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3 Simple Regression: Coefficient of Determination
3.1 Used cars example
The table below displays data on Age (in years) and Price (in hundreds of dollars) for a sample of cars of a
particular make and model.(Weiss, 2012)

Price (y) Age (x)
85 5
103 4
70 6
82 5
89 5
98 5
66 6
95 6
169 2
70 7
48 7

• For our example, age is the predictor variable and price is the response variable.

• The regression equation is ŷ = 195.47 − 20.26 x, where the slope b1 = −20.26 and the intercept
b0 = 195.47

• Prediction: for x = 4, that is we would like to predict the price of a 4-year-old car,

ŷ = 195.47− 20.26(4) = 114.43 or $11443

3.2 Extrapolation
• Within the range of the observed values of the predictor variable, we can reasonably use the regression

equation to make predictions for the response variable.

• However, to do so outside the range, which is called Extrapolation, may not be reasonable because
the linear relationship between the predictor and response variables may not hold here.

• To predict the price of an 11-year old car, ŷ = 195.47 − 20.26(11) = −27.39 or $ 2739, this result is
unrealistic as no one is going to pay us $2739 to take away their 11-year old car.
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3.3 Outliers and influential observations
• Recall that an outlier is an observation that lies outside the overall pattern of the data. In the context

of regression, an outlier is a data point that lies far from the regression line, relative to the other data
points.

• An influential observation is a data point whose removal causes the regression equation (and line)
to change considerably.

• From the scatterplot, it seems that the data point (2,169) might be an influential observation. Removing
that data point and recalculating the regression equation yields ŷ = 160.33− 14.24 x.
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3.4 Coefficient of determination
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• The total variation in the observed values of the response variable, SST =
∑

(yi− ȳ)2, can be partitioned
into two components:

– The variation in the observed values of the response variable explained by the regression: SSR =∑
(ŷi − ȳ)2

– The variation in the observed values of the response variable not explained by the regression:
SSE =

∑
(yi − ŷi)2

• The coefficient of determination, R2 (or R-square), is the proportion of the variation in the observed
values of the response variable explained by the regression, which is given by

R2 = SSR

SST
= SST − SSE

SST
= 1− SSE

SST

where SST = SSR + SSE. R2 is a descriptive measure of the utility of the regression equation for
making prediction.

• The coefficient of determination R2 always lies between 0 and 1. A value of R2 near 0 suggests that the
regression equation is not very useful for making predictions, whereas a value of R2 near 1 suggests
that the regression equation is quite useful for making predictions.

• For a simple linear regression (one independent variable) ONLY, R2 is the square of Pearson correlation
coefficient, r.

• Adjusted R2 is a modification of R2 which takes into account the number of independent variables,
say k. In a simple linear regression k = 1. Adjusted-R2 increases only when a significant related
independent variable is added to the model. Adjusted-R2 has a crucial role in the process of model
building. Adjusted-R2 is given by

Adjusted-R2 = 1− (1−R2) n− 1
n− k − 1
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3.5 Notation used in regression

Quantity Defining formula Computing formula
Sxx

∑
(xi − x̄)2 ∑

x2
i − nx̄2

Sxy
∑

(xi − x̄)(yi − ȳ)
∑
xiyi − nx̄ȳ

Syy
∑

(yi − ȳ)2 ∑
y2
i − nȳ2

where x̄ =
∑

xi

n and ȳ =
∑

yi

n . And,

SST = Syy, SSR =
S2
xy

Sxx
, SSE = Syy −

S2
xy

Sxx

and SST = SSR+ SSE.
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