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1 Sampling

1.1 Sampling

e Sampling is widely used as a means of gathering useful information about a population.

e Data are gathered from samples and conclusions are drawn about the population as a part of the
inferential statistics process.

e Often, a sample provides a reasonable means for gathering such useful decision-making information
that might be otherwise unattainable and unaffordable.

e Sampling error occurs when the sample is not representative of the population.

1.2 Random versus non-random sampling

e In random sampling every unit of the population has the same probability of being selected into the
sample.

— Simple random sampling
— Stratified sampling

— Cluster sampling

— Multistage sampling

e In non-random sampling not every unit of the population has the same probability of being selected
into the sample.

— Convenience sampling
— Judgement sampling
— Quota sampling

1.3 Simple random sampling

Simple random sampling: is the basic sampling technique where we select a group of subjects (a sample)
from a larger group (a population). Each individual is chosen entirely by chance and each member of the
population has an equal chance of being included in the sample.

1.4 Central limit theorem

Let X7, Xo,... be independent and identically distributed (i.i.d.) random variables with mean p and variance
o?. Then as n increases indefinitely (i.e. n — o), X,, = Y. | X;/n approaches the normal distribution with
mean g and variance o2 /n. That is

X, ~ N(uo®/n)

n— oo

Note that this result holds true regardless of the form of the underlying distribution. As a result, it follows

that —_
Xn — K

= —"  ~
a/\/ﬁ n—oo

N(0,1)

That is, Z is a standardized normal variable.

1.5 Sampling distribution of the sample mean x

The sampling distribution of a statistic is the probability distribution of that statistic.
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There are two cases:

1. Sampling is from a normally distributed population with a known population variance:

2
o
n
That is, the sampling distribution of the sample mean is normal with mean puz; = p and standard

deviation oz = o//n.

2. Sampling is from a non-normally distributed population with known population variance and n is large,
then the mean of z,

Hz = K

and the variance,

with replacement (infinite population)

N~ Without replacement (finite population)
e If the sample size is large, the central limit theorem applies and the sampling distribution of & will be
approximately normal.

e The standard deviation of the sampling distribution of the sample mean, oz, is called the standard
error of the mean or, simply, the standard error

o If z is a normal distributed (or approximately normal distributed), we can use the following formula to
transform Z to a Z-score.

where Z ~ N(0,1).

1.6 Sampling distribution of the sample proportion

e« When the sample size n is large, the distribution of the sample proportion, 7, is approximately
normally distributed by the use of the central limit theorem,

ﬁzN<7r,7T(1_7T>>

n



then .
Z = ——— = N(0,1)

where 7 = z/n, = is the number in the sample with the characteristic of interest.

o A widely used criterion is that both nm and n(1 — 7) must be greater than 5 for this approximation to
be reasonable.

1.7 Sampling distribution of the sample variance

Sampling is from a normally distributed population with mean p and variance o%. The sample variance is

1 n
2 _ 2
%= n_liél(:cl z)

and
E(s%) = o?
Var(s?) =20%/(n — 1)
Then ( 2
n—1)s 9
T X

1.8 Example

Suppose that during any hour in a large department store, the average number of shoppers is 448, with a
standard deviation of 21 shoppers. What is the probability that a random sample of 49 different shopping
hours will yield a sample mean between 441 and 446 shoppers?

pw=448,0 =21,n =49

441 — 448 F—p 446 — 44
P(441§a‘:§446):( 8 T-p 446 8)

21/V49 ~ o/yn = 21//49
P(-2.33< Z < —0.67) =P(Z < —0.67) — P(Z < —2.33)
=0.2514 — 0.0099 = 0.2415

I 1
z=-233 z=--0.67

That is there is a 24.15% chance of randomly selecting 49 hourly periods for which the sample mean is
between 441 and 446 shoppers.

We used the standard normal table to obtain these probabilities. We can also use R.

pnorm(-0.67)-pnorm(-2.33)

## [1] 0.2415258



2 Estimation

2.1 Estimation

e The values of population parameters are often unknown.
e We use a representative sample of the population to estimate the population parameters.

There are two types of estimation:

¢ Point Estimation
o Interval Estimation

WWWWW%WWW . ﬁean; Xy }rianzce
NN

o
’n‘ X1, X0, .on Xy,

2.2 Point estimation

¢ A point estimate is a single numerical value used to estimate the corresponding population parameter.
A point estimate is obtained by selecting a suitable statistic (a suitable function of the data) and
computing its value from the given sample data. The selected statistic is called the point estimator.

e The point estimator is a random variable, so it has a distribution, mean, variance etc.

o e.g. the sample mean X = (1/n) """, X; is one possible point {estimator} of the population mean
, and the point estimate is z = (1/n) > 1 z;.

Properties:

e Let 6 be the unknown population parameter and 0 be its estimator. The parameter space is denoted by

.
« An estimator f is called unbiased estimator of 0 if E(f) = 6.
« The bias of the estimator 6 is defined as Bias(0) = E(0) — 0

e Mean Square Error (MSE) is a measure of how close 0 is, on average, to the true 6,

MSE = E[(6 — 0)%] = Var(6) + [Bias(0))?

2.3 Interval estimation

o An interval estimate (confidence interval) is an interval, or range of values, used to estimate a
population parameter.

o The level of confidence (1 — «)100% is the probability that the interval estimate contains the
population parameter.

e Interval estimate components:



point estimate £ (critical value x standard error)

2.4 Confidence intervals for the population mean

o When sampling is from a normal distribution with known variance o2, then a 100(1 — a)% confidence

interval for the population mean p is

T+ Za/2 (O—/\/ﬁ)

where 2,/ can be obtained from the standard normal distribution table.

1001 — )%  « Zo /2
90% 0.10 1.645
95% 0.05 1.96
99% 0.01 2.58

o If o is unknown and n > 30, the sample standard deviation s = \/>_(x; — Z)2/(n — 1) can be used in

place of o.

100(1 - ot)% Cl for

X- Z(l‘l"‘g()“."‘l‘w".n

X+ Z(z,"‘IQU""I’ Jn

x|

99%

95%

90%

T
-2.576 -1.96 -1.645

T T T T
0 1645 196 2576

e If the sampling is from a non-normal distribution and n > 30, then the sampling distribution of
Z is approximately normally distributed (central limit theorem) and we can use the same formula,
T £ 242 (0/4/n), to construct the approximate confidence interval for population mean.

e When sampling is from a normal distribution whose standard deviation ¢ is unknown and the sample
size is small, the 100(1 — @)% confidence interval for the population mean fx is

T Etos (s/vn)



where t,, /5 can be obtained from the ¢ distribution table with df =n — 1 and s is the sample standard
deviation which is given by
2. (xi — @)

S =
n—1

e If o is unknown, and we neither have normal population nor large sample, then we should use
nonparametric statistics (not cover in this course).

2.5 Interpreting confidence intervals

o Probabilistic interpretation: In repeated sampling, from some population, 100(1 — @)% of all
intervals which we constructed will in the long run include the population parameter.

o Practical interpretation: When sampling is from some population, we have 100(1 — a)% confidence
that the single computed interval contains the population parameter.

2.6 Confidence interval for a population proportion
The 100(1 — «)% confidence interval for a population proportion 7 is given by

71— 7)

7/%:‘:2’04/2
n

where 7 is the sample proportion.

2.7 Confidence interval for a population variance

The 100(1 — )% confidence interval for the variance, o2, of a normally distributed population is given by

((n— 1)s? (n— 1)52>
2 2
Xen-1 Xi-gn-1

2 1 n ) —\2 . .
where s° = —5 3" | (7; — ) is the sample variance.

A
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2.8 Example

Suppose a car rental firm wants to estimate the average number of kilometres travelled per day by each of its
cars rented in London. A random sample of 20 cars rented in London reveals that the sample mean travel
distance per day is 85.5 kilometres, with a population standard deviation of 19.3 kilometres. Compute a 99%
confidence interval to estimate pu.



For a 99% level of confidence, a z value of 2.58 is obtained (from the standard normal table). Assume that
number of kilometres travelled per day is normally distributed.% in the population.

jiza/gi

NG

19.
85.50 £ 2.58£

V20
85.5+11.1

thus 74.4 < < 96.6
gnorm((1-0.99)/2)

## [1] -2.575829



3

3.1

Hypothesis Testing One Sample

Hypothesis testing: Motivation

We often encounter such statements or claims:

A newspaper claims that the average starting salary of MBA graduates is over £50K. (one sample test)

A claim about the efficiency of a particular diet program, the average weight after the program is less
than the average weight before the program. (two paired samples test)

On average female managers earn less than male managers, given that they have the same qualifications
and skills. (two independent samples test)

So we have claims about the populations’ means (averages) and we would like to verify or examine these
claims.

This is a kind of problem that hypothesis testing is designed to solve.

3.2

3.3

The nature of hypothesis testing

We often use inferential statistics to make decisions or judgments about the value of a parameter, such
as a population mean.

Typically, a hypothesis test involves two hypotheses:

— Null hypothesis: a hypothesis to be tested, denoted by Hj.
— Alternative hypothesis (or research hypothesis): a hypothesis to be considered as an
alternate to the null hypothesis, denoted by H; or H,.

The problem in a hypothesis test is to decide whether or not the null hypothesis should be rejected in
favour of the alternative hypothesis.

The choice of the alternative hypothesis should reflect the purpose of performing the hypothesis test.
How do we decide whether or not to reject the null hypothesis in favour of the alternative hypothesis?
Very roughly, the procedure for deciding is the following:

— Take a random sample from the population.

— If the sample data are consistent with the null hypothesis, then do not reject the null hypothesis;
if the sample data are inconsistent with the null hypothesis, then reject the null hypothesis and
conclude that the alternative hypothesis is true.

Test statistic: the statistic used as a basis for deciding whether the null hypothesis should be rejected.

The test statistic is a random variable which therefore has a sampling distribution with mean and
standard deviation (so-called standard error).

Type I and Type II Errors
Hyis
TRUE FALSE

Do not reject H, |Correctdecision |Type II error

Decision

Reject H, Type I error Correct decision

Type I error: rejecting the null hypothesis when it is in fact true.

Type II error: not rejecting the null hypothesis when it is fact false.



3.4

The significance level, «, of a hypothesis test is defined as the probability of making a Type I error,
that is, the probability of rejecting a true null hypothesis.

Relation between Type I and II error probabilities: For a fixed sample size, the smaller the
Type I error probability, a, of rejecting a true null hypothesis, the larger the Type II error probability
of not rejecting a false null hypothesis and vice versa.

Possible conclusions for a hypothesis test: If the null hypothesis is rejected, we conclude that the
alternative hypothesis is probably true. If the null hypothesis is not rejected, we conclude that the data
do not provide sufficient evidence to support the alternative hypothesis.

When the null hypothesis is rejected in a hypothesis test performed at the significance level «, we say
that the results are statistically significant at level «.

Hypothesis tests for one population mean

In order to test the hypothesis that the population mean pu is equal to a particular value g, we are going to
test the null hypothesis

Ho : = po

against one of the following alternatives:

Hi : p# po (Two-tailed)
Hy @ p < po (Left-tailed)
Hy : p > po (Right-tailed)

In order to test Hy, we need to use one of the following test statistics, we should choose the one that satisfies
the assumptions.

3.5

If o is known, and we have a normally distributed population or large sample (n > 30), then the test
statistic, so-called z-test, is ~
y = T — Ho
o/vn
where o is the standard deviation of the population.
If o is unknown, and we have a normally distributed population or large sample (n > 30), then the test
statistic, so-called t-test, is

T— o .
t= th df =n—1.
N wi If =n

where s is the standard deviation of the sample.

The p-value approach to hypothesis testing

The p-value is the smallest significance level at which the null hypothesis would be rejected. The p-value
is also known as the observed significance level.

The p-value measures how well the observed sample agrees with the null hypothesis. A small p-value
(close to zero) indicates that the sample is not consistent with the null hypothesis and the null hypothesis
should be rejected. On the other hand, a large p-value (larger than 0.10) generally indicates a reasonable
level of agreement between the sample and the null hypothesis.

As a rule of thumb, if p-value < « then reject Hy; otherwise do not reject Hy.

10



3.6 Critical-value approach to hypothesis testing

Two tailed Left tailed Right tailed
1 I 1 1
] | 1 |
1 I 1 I
1 I 1 I
1 | 1 |
1 I 1 I
(,Rejec‘ /Do notreject _, Reject Reject | /Do not reject Do not reject\ | Reject _
) | 1 < v/ \ i / \ -
1 | ) |
(1“2! 1-a 5(1‘2 a 1-a 1-a a
a2 Zal2 2 Za

For any specific significance level a, one can obtain these critical values +z,/o and £z, from the standard
normal table.

1.282 1.645 1.960 2.326 2.576

20.10 20.05 20.025 20.01 20.005

If the value of the test statistic falls in the rejection region, reject Hy; otherwise do not reject Hy.

Two tailed Left tailed Right tailed
! ! 1 1
| | 1 |
| | 1 |
! ! 1 !
! ! 1 |
! 1 1 1
(,Reject i /Donotrejecty Reject) P Reject | /Do not reject\ /Do not reject\ | Reject N
N 1 | - N | | -
| | ) |
a‘2! 1-a !a‘2 o 1-a 1-a a
) Tar2 =1, Ia

For any specific significance level «, one can obtain these critical values 4t /o and +t, from the T distribution
table. For example, for df =9 and a = .05, the critical values are +tg go5 = +2.262 and +tg.95 = £1.833.

3.7 Hypothesis testing and confidence intervals

Hypothesis tests and confidence intervals are closely related. Consider, for instance, a two tailed hypothesis
test for a population mean at the significance level «. It can be shown that the null hypothesis will be
rejected if and only if the value ug given for the mean in the null hypothesis lies outside the 100(1 — «)-level
confidence interval for pu.

Example:

o At significance level a = 0.05, we want to test Hp : p = 40 against Hy : u # 40 (so here pg = 40).
e Suppose that the 95% confidence interval for u is 35 <u< 38.
e As o = 40 lies outside this confidence intervals, we reject H.

3.8 Test of Normality

One of the assumptions in order to use z-test or t-test is that the population which we sampled from is
normally distributed. However we did not yet test this assumption, we should perform a so-called test of
normality. In order to do so:

e We can plot our data sample, e.g. histogram, boxplot, stem-and-leaf and normal Q-Q plot

o Use normality tests such as Kolmogorov-Smirnov test or Shapiro-Wilk test. The null and alternative
hypotheses are:

11



— Hy: the population being sampled is normally distributed.
— H;y: the population being sampled is nonnormally distributed.

If o is unknown, and we neither have normal population nor large sample, then we should use nonparametric
tests instead of z-test or t-test (not cover in this course).

3.9 Example

A company reported that a new car model equipped with an enhanced manual transmission averaged 29
mpg on the highway. Suppose the Environmental Protection Agency tested 15 of the cars and obtained the
following gas mileages.

273 309 259 31.2 29.7
28.8 294 285 289 31.6
27.8 278 28.6 273 27.6

What decision would you make regarding the company’s claim on the gas mileage of the car? Perform the
required hypothesis test at the 5% significance level.

Solution:

The null and alternative hypotheses:
Hy: pp=29 mpg vs. Hip:p# 29 mpg

The value of the test statistic,

7 — 98.753 — 29
R — 0599

T s/yn 1.595/v/15

As p-value = 0.559 > a = 0.05. So, we cannot reject Hy. At the 5% significance level, the data do not provide
sufficient evidence to conclude that the company’s report was incorrect.

<Reiect /Do notrejecty , Reject
a/2 1-a | 0/2=0.025
- P -
-2.145 —0.599 2.145
R output:
# Data

mlg<-c(27.3, 30.9, 25.9, 31.2, 29.7,
28.8, 29.4, 28.5, 28.9, 31.6,
27.8, 27.8, 28.6, 27.3, 27.6)

# t-test
t.test(mlg,alternative = "two.sided", mu = 29, conf.level = 0.95)

##
## One Sample t-test

12



#it

## data: mlg

## t = -0.59878, df = 14, p-value = 0.5589

## alternative hypothesis: true mean is not equal to 29
## 95 percent confidence interval:

## 27.86979 29.63688

## sample estimates:

## mean of x

## 28.75333

# Normality test
# Kolmogorov Smirnov Test
ks.test(mlg, "pnorm", mean=mean(mlg), sd=sd(mlg))

## Warning in ks.test(mlg, "pnorm", mean = mean(mlg), sd = sd(mlg)): ties should
## not be present for the Kolmogorov-Smirnov test

##

## One-sample Kolmogorov-Smirnov test
##

## data: mlg

## D = 0.13004, p-value = 0.9616

## alternative hypothesis: two-sided

# Shapiro-Wilk test
shapiro.test(mlg)

##

## Shapiro-Wilk normality test
##

## data: mlg

## W = 0.95817, p-value = 0.6606
par (mfrow=c(1,2))

qgnorm(mlg)

qqline(mlg, col = "red")
hist(mlg)

13
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4 Hypothesis Testing Two Samples (Workshop 4)

4.1 Motivation
We often encounter such statements or claims:
o A newspaper claims that the average starting salary of MBA graduates is over £50K. (one sample test)

e A claim about the efficiency of a particular diet program, the average weight after the program is less
than the average weight before the program. (two paired samples test)

e On average female managers earn less than male managers, given that they have the same qualifications
and skills. (two independent samples test)

So we have claims about the populations’ means (averages) and we would like to verify or examine these
claims.

This is a kind of problem that hypothesis testing is designed to solve.

4.2 Hypothesis tests for two population means
We have two types of samples here:

e Paired samples: each case must have scores on two variables and it is applicable to two types of
studies, repeated-measures (e.g. weights before and after a diet plan) and matched-subjects designs
(e.g. measurements on twins or child/parent pairs).

¢ Independent samples: two samples are called independent samples if the sample selected from one
of the populations has no effect on (holds no information about) the sample selected from the other
population.

4.3 Hypothesis tests for two population means

In order to compare two population means, we are going to test the null hypothesis

Ho :p1 = po

against one of the following alternatives:
o Hy:py # po or pup — pe # 0 (Two-tailed)
o Hy:pg <pe or pp — ps <0 (Left-tailed)
o Hy:pg>pe or pup — pg > 0 (Right-tailed)

4.4 Comparing two means: Paired (related) samples
o Assumptions: the paired differences, d = 1 — x5, are normally distributed.

o Test statistics: Paired t-test

d
sa/v/n

t =

where d = %Zdl and s% = —1-3"(d; — d)?

d ™~ n—-1

e 100(1 — @)% confidence intervals for the difference between two population means py — po are

Ji ta/2 Sd/\/ﬁ

where t, /5 is the a/2 critical value from the t-distribution with df =n — 1

15



4.5 Comparing two means: Independent samples

In order to test Hy : 1 = po for two independent samples, we need to use one of the following test statistics,
we should choose the one that satisfies the assumptions. Let o; and oo be the standard deviations of
population 1 and population 2, respectively.

4.5.1 z-test
o Assumptions: o and oy are known and we have large samples (n; > 30, ny > 30)
o Test statistic: z-test B _
1 — T2

V(i /m) + (03 /n2)

e 100(1 — @)% confidence intervals for the difference between two population means p; — po are

(T1 — T2) + 202 \/(Uf/nl) + (03 /n2)
where z,/9 is the o /2 critical value from the standard normal distribution.

4.5.2 Pooled t-test
o Assumptions: Normal populations, o1 and o9 are unknown but equal (o7 = 02)
o Test statistic: Pooled t-test _ B
Ty — o
sp v/ (1/n1) + (1/n2)

ni1—1)s24(no—1)s2
ni+ng—2 :

has a t-distribution with df = n; + ny — 2, where s, = \/(

o 100(1 — @)% confidence intervals for the difference between two population means pq — o are

(1 — Z2) Etas2 spV/(1/n1) + (1/n2)

where /5 is the /2 critical value from the t-distribution with df = ny +ny — 2.

4.5.3 Non-Pooled t-test
o Assumptions: Normal populations, o1 and o2 are unknown and unequal (o1 # 02)
o Test statistic: Non-Pooled t-test
1 — T2
V(s1/m1) + (s3/n2)

[(s7/m1) + (s3/m2)]?
[<s§/m>2 N <s§/n2>2}

’I’Llfl ’ngfl

has a t-distribution with df = A =

o 100(1- )% confidence intervals for the difference between two population means p; — po are

(21— 2) £ tago \/(53/m1) + (3/n2)

where t,/ is the a/2 critical value from the t-distribution with df = A.

16



4.5.4 Levene’s Test for Equality of Variances

In order to choose between Pooled t-test and Non-Pooled t-test, we need to check the assumption that the

two populations have equal (but unknown) variances. That is, test the null hypothesis that Hy : 0?2 = o3

against the alternative that H; : 0% # o3.

The test statistic of Levene’s test follows F' distribution with 1 and n; + ny — 2 degrees of freedoms.

Reject H|,

F(df, dfy

4.6 Critical-value approach to hypothesis testing

Two tailed Left tailed Right tailed
1 I 1 1
! I 1 !
! 1 1 !
! I 1 |
| 1 1 |
| I | |
_Reject | Do not rejectt 1 Reject_ Reject | /Do not reject Do not reject\ | Reject _
N r/ \ - v/ \ ‘ f 1 g
1 I ) |
(x'2{ 1-a !a:2 a 1-a 1-a a
T Lal2 Zal2 2y 2

For any specific significance level «, one can obtain these critical values +z,/o and +z, from the standard
normal distribution table. If the value of the test statistic falls in the rejection region, reject Hy; otherwise
do not reject Hy.

Z0.10  20.05  20.025 20.01  20.005
1282 1645 196 O 2.326 2.576

4.7 Critical-value approach to hypothesis testing

Two tailed Left tailed Right tailed
1 1 I !
1 1 | |
1 1 I !
1 1 I !
1 1 | |
1 1 I |
(,,Reject /Do not reject)  , Reject _ Reject | /Do not reject Do not reject\, , Reject _
N [ 1 - = v/ \ ’ / \ -
1 1 I, |
a‘2f 1-a !as2 a 1-a 1-a o
) tan —ly Iy

For any specific significance level «, one can obtain these critical values 4t /o and £, from the T distribution
table. For example, for df =9 and a = .05, the critical values are +tg go5 = +2.262 and =+tg.05; = £1.833.

17



4.8 Critical-value approach to hypothesis testing
State the null and alternative hypotheses

Decide on the significance level o

Compute the value of the test statistic

Determine the critical value(s)

If the value of the test statistic falls in the rejection region, reject Hy; otherwise do not reject Hy.

AT B

Interpret the result of the hypothesis test.

We can replace Steps 4 and 5 by using the p-value. A common rule of thumb is that we reject the null
hypothesis if the p-value is less than or equal to the significance level a.

4.9 Example

In a study of the effect of cigarette smoking on blood clotting, blood samples were gathered from 11 individuals
before and after smoking a cigarette and the level of platelet aggregation in the blood was measured. Does
smoking affect platelet aggregation?

before after d

25 27 2
25 29 4
27 37 10
44 56 12
30 46 16
67 82 15

93 o7 4
33 80 27
92 61 9

60 59 -1
28 43 15

-1 &
d:EZdi:m.z?

i=1

sq = T7.98

Sd 7.98
s;=—2 = =240

17 n Vi1

At the 90% level (o = 0.10), the critical value ¢19,0.05 = 1.812, and so a 90% confidence interval is

d 4 1.812 (sq/v/n) = 10.27 + 1.812 x 2.40 = [5.19, 14.63]

which clearly excludes 0.

To test the null hypothesis that the means before and after are the sample: that is Hy : ptpefore = Lafter

against Hy : fibefore 7 Hafter B
d 10.27
safvn 240

t=

since [¢| > 1.812 then we reject Hy.
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Reject Do not reject Reject
a/2 1-a /2
— e

—lan Lar2

before<-c(25,25,27,44,30,67,53,53,52,60,28)
after<-c(27,29,37,56,46,82,57,80,61,59,43)
d<-after-before
qt(0.1/2, df=10)

## [1] -1.812461
t.test(after, before, "two.sided", paired = TRUE,conf.level = 0.90)

#i#

## Paired t-test

##

## data: after and before

## t = 4.2716, df = 10, p-value = 0.001633
## alternative hypothesis: true difference in means is not equal to O
## 90 percent confidence interval:

##  5.913967 14.631488

## sample estimates:

## mean of the differences

## 10.27273

hist(d,main="",col = '#61B2F2')
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